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A common procedure in experiments is to use binary lotteries to induce in all 

subjects pre-specified risk preferences. The validity of this procedure has been 

established only for a subject performing a single task, yet the procedure is normally 

applied in multi-task settings. This article formally analyses the multi-task case and 

establishes necessary and sufficient conditions relating to experimental design. New 

guidance is provided for the design of experiments involving interdependent tasks. 
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1. Introduction 

 

The Risk-Preference Inducing Procedure (RPIP) uses binary lotteries to induce risk 

preferences in experimental work. Its validity was established by Berg et al (1986) 

for a subject performing a single task.
1
 In practice, subjects are usually required to 

perform a series of tasks. The present article addresses the validity of RPIP in this 

setting. It shows that the assumptions underlying the special case in Berg et al 

(1986) are no longer sufficient for the validity of RPIP, and must be supplemented 

by an additional restriction relating to independence of stages. Many experiments 

will not satisfy this condition. We also show that a simple modification of the RPIP 

procedure suffices to restore its validity in such cases.  

 

2. The Analytic Framework, RPIP and Bundling 

 

In order to introduce the notation, it is useful to review the single-task problem, as 

analysed in Berg et al (1986). 

 

Single-Task single-subject experiments with RPIP 

 

The subject chooses an action a from a set of actions, Aa . Suppose the subject 

then receives a random payment x  from a finite set of rewards, Xx , with 

conditional probability density )|( axg . Assuming the subject’s preferences can be 

represented by a von Neumann-Morgenstern (VNM) utility function )(xU , the 

decision problem is: 

                                                
1
 Berg et al (1986) suggest that RPIP ‘…can be utilized in any experimental setting’, but this has not 

to date been formally demonstrated. The present article shows that the claim needs to be qualified.  
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X and )|( axg  will normally be specified in the experimental design. But since 

)(xU  is not known by the experimenter, the predicted behaviour of the subject, his 

chosen a, is indeterminate. If instead, RPIP is applied, then the subject is rewarded 

in an ‘experimental currency’, exchanged later for probability points in the play of a 

subsequent two-prize lottery. Denote the random reward of ‘experimental currency’ 

by Qq  with conditional density )|( aqf , where Q is a closed bounded interval of 

the set of real numbers. Choose for the binary lottery two money prizes, ),( xx , with 

xx   so that )()( xUxU  , and a function )()|(1)|( qGqxPqxP   for 

exchanging q into probability points for the binary lottery, then the subject’s 

decision problem is now 
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, Equation 5 reduces to 
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Since )()( xUxU   in (6), the optimal solution, a
*
 can thus be written as 
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That is, the subject behaves as if maximising the expected value of )(qG , a function 

chosen by the experimenter. By choosing a convex, linear or concave increasing 

function )(qG , respectively, risk-seeking, risk-neutral or risk-averse preferences are 

induced. This is the basic single-task result obtained in Berg et al [1986]. 

 

Sequential multi-task single-subject experiments 

 

However, the experimental norm involves a multi-task environment, and this has not 

received a formal treatment to date.  Consider then a subject performing a sequence 

of tasks where the choice at the i
th

 stage is denoted ),...,1(, niAa ii  . In order to 

control risk preferences at each stage, each decision is given a separate reward of 

experimental currency ),...,1(, niQq ii  . All of these features are assumed given 

in any experimental design that incorporates use of RPIP. Let ),...,( 1 naaa , 

nAAA  ...1  and ),...,( 1 nqqq , with conditional density function 

),,...,,,|(...),,|()|()|( 111111222111 aqaqaqfaqaqfaqff nnnnn aq
 
(8) 

Equation 8 allows for interdependence between stages, whilst recognising the 

sequential nature of stages. Thus the density function for 1q  may only depend on 1a , 

but the conditional density functions for 2q  and 3q  may depend on both previous 

decisions and previous realisations, as in Sprinkle (2000) and Dobbs and Miller 

(2009). If the ‘decision’ at any stage is multi-dimensional, then this feature can be 

accommodated in (8) by thinking of the ai as vectors of decisions. Thus n, the 
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number of stages is determined by the number of awards of qi rather than the 

number of decisions or tasks. 

 

RPIP implementations with and without bundling 

 

RPIP is most commonly implemented by running a separate lottery for each award 

of niqi ,...,1,  , with exchange functions, niqG ii ,...,1),(  . In this case, the set of 

rewards, ),...,( 1 nqqq , is effectively partitioned into n distinct subsets. However, 

RPIP can be, and has been, implemented differently (with m<n lotteries and 

),...,( 1 nqqq  accordingly partitioned into m distinct subsets). Partitioning the set 

niqi ,...,1,   into m<n partitions for the purpose of implementing RPIP is referred 

to in what follows as ‘bundling’. For example, Selten et al (1999) partitioned the set 

),...,( 501 qqq  into m=25 subsets, bundling together pairs of consecutive 

consequences, whilst Frederickson and Waller (2005) used a single lottery after a 

forty stage game, bundling together all forty consequences. In subsequent analysis, 

in common with typical experimental practice, it is assumed that the realized value 

of iq  is revealed to the subject at the end of each stage i. 

 

The objective of RPIP in sequential multi-task single-subject experiments 

 

For the single-task scenario, the objective is mathematically well-defined: to induce 

a pre-specified preference ordering, denoted here as )(qv . The RPIP procedure 

amounts to setting )()( qGqv  , and subjects then behave as if maximising the 

expected value of )(qG . In the multi-task context, inductive analysis of how RPIP 
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has actually been employed suggests that, for each stage of the experiment, 

researchers seek to induce a preference ordering for q that is independent of q 

realized in all other stages of the sequence; that is, in the ith stage, the objective is to 

induce a preference ordering )( ii qv , that is independent of all ijq j , . 

Independent preference orderings allow considerable flexibility to an experimenter, 

not least because there is no requirement for induced preferences to be identical in 

every stage. But one restriction is required. It involves the structure of preferences 

for the full set of experimental consequences q. It is well known that an additively-

separable preference function is sufficient for independent preference orderings over 

each individual consequence, but Koopmans (1972) has also demonstrated it is 

necessary. Given this, attention can be restricted to the class of additively-separable 

induced preference functions over the full set of consequences q; that is, 





n

i

ii qvv
1

)()(q        (9) 

so that the induced preference function under uncertainty is  

    



n

i

ii qvEvE
1

)()(q       (10) 

A dynamic programming approach to maximize (10) involves, at every stage j, the 

subject selecting the action ja  that maximizes   


n

ji

iij qvE )( , where the subscript 

on the expectations operator indicates that conditional expectations are taken at stage 

j, as a function of previous actions and realisations of q. 

 

All implementations of RPIP used in the literature are members of the class of 

induced preferences examined here.  To illustrate, for the frequently-observed case 
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of m=n lotteries, set )()( iiii qGqv  , giving 
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(1999) case where m<n lotteries, set iii qqv )(  so that 
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(2005) case where m=1, set )()( qq Gv  . 

 

The validity of RPIP with full bundling (m=1) 

 

RPIP is valid for all sequential multi-task single-subject experiments as long as 

multiple consequences are fully bundled into a single binary lottery. Proposition 1 

below can be proved using the same assumptions as the single-task case presented 

above: 

Proposition 1: Regardless of personal preferences over money 

rewards, as long as the q consequences at each stage are bundled into a 

single lottery, )(qG , then a VNM maximizer will behave as if she has 

preferences over q, )(qG , pre-specified by the experimenter. 

 

Proof: Available from the authors.  

 

This result is significant firstly because it lends support to the idea that RPIP can be 

applied to any experiment, and secondly, because it offers a ‘failsafe’ method for 

implementing RPIP when other bundling solutions, m>1, do not work. In the next 

section, it is shown that for RPIP to be valid without complete bundling, m>1, the 

class of sequential multi-task single-subject experiments to which it can be applied 
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must be restricted. For such excluded cases, full bundling, though seldom applied in 

practice, offers a solution. 

 

3. Stage Independence and RPIP without Bundling 

 

This section focuses on the most frequently observed case of ‘no bundling’ (m=n), 

where 



n

i

ii qGv
1

)()(q . In this case, with n lotteries, there are n money awards; for 

each stage played, the associated award is paid immediately on completion of the 

stage. The rewards at different stages are denoted nxxx ,...,, 21  and subject 

preferences are described by an arbitrary VNM utility function ),...,,( 21 nxxxU .  

 

Definition 1:  Stage independence is defined as a condition in which 

(8) can be multiplicatively decomposed and written as:
2
 

 )|(...)|()|()|( 222111 nnn aqfaqfaqff aq    (11) 

or equivalently )|(),,...,,,|( 1111 iiiiiiii aqfaqaqaqf   for all i. 

 

Proposition 2: For an arbitrary n-stage (n2) experiment, where 

stages are not bundled, then regardless of personal preferences over 

the set of money rewards, a VNM maximizer will behave as if she has 

preferences over q, 



n

i

ii qGv
1

)()(q  if and only if the experimental 

design exhibits stage independence. 

                                                
2 This is a stronger requirement than ‘statistical independence’. Statistical independence would 
merely allow (8) to be multiplicatively decomposed and written as: 

 ),...,,|(...),|()|()|( 111222111 aaaqfaaqfaqff nnnn aq  
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Proof: Available from the authors.  

 

Proposition 1 and Proposition 2 have immediate relevance to intermediate cases of 

bundling, 1<m<n; for any interdependence within a subset of stages leads to a failure 

of the necessary condition and, in turn, Proposition 1 indicates a design solution to 

restore the validity of RPIP for that subset of stages. Otherwise, if stages are 

independent, then the bundling decision is irrelevant to the validity of RPIP, leaving 

researchers with some degree of freedom in how RPIP is implemented.  

 

4. Conclusions and Implications for the design of Experiments 

 

Bundling has been incorporated into published RPIP designs in diverse ways, yet its 

purpose has never been discussed. We know of no theoretical material referring to 

bundling, or explaining how it should fit into experimental designs, and this 

motivates the present article.  Berg et al (1986) established the validity of RPIP for a 

single risky decision. However, the technique has found widespread use in 

applications involving multiple stages, multiple agents, and/or complex learning 

environments. The validity of RPIP in these various implementations is thus unclear.  

The present article establishes conditions for the valid use of RPIP – specifically, 

independence between the multiple stages of the experiment is necessary and 

sufficient for the most widely-used implementation of binary lotteries, involving a 

one-to-one correspondence of stages to lotteries, a design described here as ‘no 

bundling’. With interdependence, it is shown that the affected stages must be 

bundled together into a single lottery.  
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